闭包
1. 函数引用
def test1():
print("--- in test1 func----")
#调用函数
test1()
#引用函数
ret = test1
print(id(ret))
print(id(test1))
#通过引用调用函数
ret()
2. 什么是闭包
#定义一个函数
def test(number):
#在函数内部再定义一个函数,并且这个函数用到了外边函数的变量,那么将这个函数以及用到的一些变量称之为闭包
def test_in(number_in):
print("in test_in 函数, number_in is %d"%number_in)
return number+number_in
#其实这里返回的就是闭包的结果
return test_in
#给test函数赋值,这个20就是给参数number
ret = test(20)
#注意这里的100其实给参数number_in
print(ret(100))
#注意这里的200其实给参数number_in
print(ret(200))
3. 闭包再理解
内部函数对外部函数作用域里变量的引用(非全局变量),则称内部函数为闭包。
# closure.py
def counter(start=0):
count=[start]
def incr():
count[0] += 1
return count[0]
return incr
4. 看一个闭包的实际例子:
def line_conf(a, b):
def line(x):
return a*x + b
return line
line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5))
print(line2(5))
这个例子中,函数line与变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。
如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。
闭包思考:
1.闭包似优化了变量,原来需要类对象完成的工作,闭包也可以完成
2.由于闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存
装饰器
装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
func()
return inner
@w1
def f1():
print('f1')
python解释器就会从上到下解释代码,步骤如下:
def w1(func): ==>将w1函数加载到内存
@w1
没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在 没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章, @函数名 是python的一种语法糖。
上例@w1内部会执行一下操作:
执行w1函数
执行w1函数 ,并将 @w1 下面的函数作为w1函数的参数,即:@w1 等价于 w1(f1) 所以,内部就会去执行:
def inner():
#验证 1
#验证 2
#验证 3
f1() # func是参数,此时 func 等于 f1
return inner# 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1 函数塞进另外一个函数中
w1的返回值
将执行完的w1函数返回值 赋值 给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:
新f1 = def inner():
#验证 1
#验证 2
#验证 3
原来f1()
return inner
想要执行 f1 函数时,就会执行 新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。
再议装饰器
#定义函数:完成包裹数据
def makeBold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped
#定义函数:完成包裹数据
def makeItalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped
@makeBold
def test1():
return "hello world-1"
@makeItalic
def test2():
return "hello world-2"
@makeBold
@makeItalic
def test3():
return "hello world-3"
print(test1()))
print(test2()))
print(test3()))
装饰器(decorator)功能
引入日志
函数执行时间统计
执行函数前预备处理
执行函数后清理功能
权限校验等场景
缓存
装饰器示例
例1:无参数的函数
from time import ctime, sleep
def timefun(func):
def wrappedfunc():
print("%s called at %s"%(func.__name__, ctime()))
func()
return wrappedfunc
@timefun
def foo():
print("I am foo")
foo()
sleep(2)
foo()
上面代码理解装饰器执行行为可理解成
foo = timefun(foo)
#foo先作为参数赋值给func后,foo接收指向timefun返回的wrappedfunc
foo()
#调用foo(),即等价调用wrappedfunc()
#内部函数wrappedfunc被引用,所以外部函数的func变量(自由变量)并没有释放
#func里保存的是原foo函数对象
例2:被装饰的函数有参数
from time import ctime, sleep
def timefun(func):
def wrappedfunc(a, b):
print("%s called at %s"%(func.__name__, ctime()))
print(a, b)
func(a, b)
return wrappedfunc
@timefun
def foo(a, b):
print(a+b)
foo(3,5)
sleep(2)
foo(2,4)
例3:被装饰的函数有不定长参数
from time import ctime, sleep
def timefun(func):
def wrappedfunc(*args, **kwargs):
print("%s called at %s"%(func.__name__, ctime()))
func(*args, **kwargs)
return wrappedfunc
@timefun
def foo(a, b, c):
print(a+b+c)
foo(3,5,7)
sleep(2)
foo(2,4,9)
例4:装饰器中的return
from time import ctime, sleep
def timefun(func):
def wrappedfunc():
print("%s called at %s"%(func.__name__, ctime()))
func()
return wrappedfunc
@timefun
def foo():
print("I am foo")
@timefun
def getInfo():
return '----hahah---'
foo()
sleep(2)
foo()
print(getInfo())
总结:
一般情况下为了让装饰器更通用,可以有return
例5:装饰器带参数,在原有装饰器的基础上,设置外部变量
#decorator2.py
from time import ctime, sleep
def timefun_arg(pre="hello"):
def timefun(func):
def wrappedfunc():
print("%s called at %s %s"%(func.__name__, ctime(), pre))
return func()
return wrappedfunc
return timefun
@timefun_arg("itcast")
def foo():
print("I am foo")
@timefun_arg("python")
def too():
print("I am too")
foo()
sleep(2)
foo()
too()
sleep(2)
too()
例6:类装饰器(扩展,非重点)
装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了 call() 方法,那么这个对象就是callable的。
类装饰器demo
class Test(object):
def __init__(self, func):
print("---初始化---")
print("func name is %s"%func.__name__)
self.__func = func
def __call__(self):
print("---装饰器中的功能---")
self.__func()
#说明:
#1. 当用Test来装作装饰器对test函数进行装饰的时候,首先会创建Test的实例对象
# 并且会把test这个函数名当做参数传递到__init__方法中
# 即在__init__方法中的func变量指向了test函数体
#
#2. test函数相当于指向了用Test创建出来的实例对象
#
#3. 当在使用test()进行调用时,就相当于让这个对象(),因此会调用这个对象的__call__方法
#
#4. 为了能够在__call__方法中调用原来test指向的函数体,所以在__init__方法中就需要一个实例属性来保存这个函数体的引用
# 所以才有了self.__func = func这句代码,从而在调用__call__方法中能够调用到test之前的函数体
@Test
def test():
print("----test---")
test()
showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"