hadoop学习二之hdfs


**HDFS基本概念篇******

1. HDFS前言

  • 设计思想
    分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;

  • 在大数据系统中作用:
    为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务

  • 重点概念:文件切块,副本存放,元数据

2. HDFS的概念和特性

首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

重要特性如下:

(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

(4)文件的各个block的存储管理由datanode节点承担
—- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)

**HDFS基本操作篇******

3. HDFS的shell(命令行客户端)操作

3.1 HDFS命令行客户端使用

hadoop fs 参数

3.2 命令行客户端支持的命令参数

[-appendToFile ]
[-cat [-ignoreCrc] …]
[-checksum …]
[-chgrp [-R] GROUP PATH…]
[-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…]
[-chown [-R] [OWNER][:[GROUP]] PATH…]
[-copyFromLocal [-f] [-p] ]
[-copyToLocal [-p] [-ignoreCrc] [-crc] ]
[-count [-q] …]
[-cp [-f] [-p] ]
[-createSnapshot []]
[-deleteSnapshot ]
[-df [-h] [ …]]
[-du [-s] [-h] …]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] ]
[-getfacl [-R] ]
[-getmerge [-nl] ]
[-help [cmd …]]
[-ls [-d] [-h] [-R] [ …]]
[-mkdir [-p] …]
[-moveFromLocal ]
[-moveToLocal ]

3.3 常用命令参数介绍

-help             
功能:输出这个命令参数手册

-ls                  
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
-->hadoop fs -ls /   等同于上一条命令的效果

-mkdir              
功能:在hdfs上创建目录
示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd

-moveFromLocal            
功能:从本地剪切粘贴到hdfs
示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd

-moveToLocal              
功能:从hdfs剪切粘贴到本地
示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt 

--appendToFile  
功能:追加一个文件到已经存在的文件末尾
示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

-cat  
功能:显示文件内容  
示例:hadoop fs -cat  /hello.txt

-tail                 
功能:显示一个文件的末尾
示例:hadoop  fs  -tail  /weblog/access_log.1

-text                  
功能:以字符形式打印一个文件的内容
示例:hadoop  fs  -text  /weblog/access_log.1

-chgrp 
-chmod
-chown
功能:linux文件系统中的用法一样,对文件所属权限
示例:
hadoop  fs  -chmod  666  /hello.txt
hadoop  fs  -chown  someuser:somegrp   /hello.txt
-copyFromLocal    
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/
-copyToLocal      
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp              
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-mv                     
功能:在hdfs目录中移动文件
示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /

-get              
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get  /aaa/jdk.tar.gz
-getmerge             
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-put                
功能:等同于copyFromLocal
示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-rm                
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/

-rmdir                 
功能:删除空目录
示例:hadoop  fs  -rmdir   /aaa/bbb/ccc
-df               
功能:统计文件系统的可用空间信息
示例:hadoop  fs  -df  -h  /

-du 
功能:统计文件夹的大小信息
示例:
hadoop  fs  -du  -s  -h /aaa/*

-count         
功能:统计一个指定目录下的文件节点数量
示例:hadoop fs -count /aaa/

-setrep                
功能:设置hdfs中文件的副本数量
示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
<这里设置的副本数只是记录在namenode的元数据中,是否真的会有这么多副本,还得看datanode的数量>

**HDFS原理篇******

4. hdfs的工作机制

(工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能力,形成一定的集群运维能力)

很多不是真正理解hadoop技术体系的人会常常觉得HDFS可用于网盘类应用,但实际并非如此。要想将技术准确用在恰当的地方,必须对技术有深刻的理解

####4.1 概述

  1. HDFS集群分为两大角色:NameNode、DataNode
  2. NameNode负责管理整个文件系统的元数据
  3. DataNode 负责管理用户的文件数据块
  4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
  5. 每一个文件块可以有多个副本,并存放在不同的datanode上
  6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
  7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

4.2HDFS写数据流程

4.2.1 概述:

客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本

4.2.3 详细步骤解析

1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在

2、namenode返回是否可以上传

3、client请求第一个 block该传输到哪些datanode服务器上

4、namenode返回3个datanode服务器ABC

5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端

6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答

7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

4.3. HDFS读数据流程

4.3.1 概述

客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

4.3.3 详细步骤解析

1、跟namenode通信查询元数据,找到文件块所在的datanode服务器

2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流

3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)

4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件

5. NAMENODE工作机制

学习目标:理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力

问题场景:
1、集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?
2、Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?
3、Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?
4、文件的blocksize究竟调大好还是调小好?
……

诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解

5.1 NAMENODE职责:

NAMENODE职责:
    负责客户端请求的响应
    元数据的管理(查询,修改)

5.2 元数据管理

    namenode对数据的管理采用了三种存储形式:
    内存元数据(NameSystem)
    磁盘元数据镜像文件
    数据操作日志文件(可通过日志运算出元数据)
5.2.1 元数据存储机制
A、内存中有一份完整的元数据(内存meta data)

B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)

C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
5.2.2 元数据手动查看
可以通过hdfs的一个工具来查看edits中的信息
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
5.2.3 元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)


checkpoint操作的触发条件配置参数
dfs.namenode.checkpoint.check.period=60  #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary
#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}

dfs.namenode.checkpoint.max-retries=3  #最大重试次数
dfs.namenode.checkpoint.period=3600  #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录


checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

6. DATANODE的工作机制

问题场景:
1、集群容量不够,怎么扩容?
2、如果有一些datanode宕机,该怎么办?
3、datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?

以上这类问题的解答,有赖于对datanode工作机制的深刻理解

6.1 概述

  • Datanode工作职责:

      存储管理用户的文件块数据
      定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
      (这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
    
      <property>
          <name>dfs.blockreport.intervalMsec</name>
          <value>3600000</value>
          <description>Determines block reporting interval in milliseconds.</description>
      </property>
  • 2、Datanode掉线判断时限参数

      datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
          timeout  = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
          而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
          需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
    <property>
        <name>heartbeat.recheck.interval</name>
        <value>2000</value>
    </property>
    <property>
        <name>dfs.heartbeat.interval</name>
        <value>1</value>
    </property>

6.2 观察验证DATANODE功能

上传一个文件,观察文件的block具体的物理存放情况:

在每一台datanode机器上的这个目录中能找到文件的切块:
/home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized

**HDFS应用开发篇******

7. HDFS的java操作

hdfs在生产应用中主要是客户端的开发,其核心步骤是从hdfs提供的api中构造一个HDFS的访问客户端对象,然后通过该客户端对象操作(增删改查)HDFS上的文件

7.1 搭建开发环境

1、引入依赖

    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.6.1</version>
    </dependency>

    注:如需手动引入jar包,hdfs的jar包----hadoop的安装目录的share下
    2、window下开发的说明
    建议在linux下进行hadoop应用的开发,不会存在兼容性问题。如在window上做客户端应用开发,需要设置以下环境:
    A、在windows的某个目录下解压一个hadoop的安装包
    B、将安装包下的lib和bin目录用对应windows版本平台编译的本地库替换
    C、在window系统中配置HADOOP_HOME指向你解压的安装包
    D、在windows系统的path变量中加入hadoop的bin目录

7.2 获取api中的客户端对象

    在java中操作hdfs,首先要获得一个客户端实例
    Configuration conf = new Configuration()
    FileSystem fs = FileSystem.get(conf)

    而我们的操作目标是HDFS,所以获取到的fs对象应该是DistributedFileSystem的实例;
    get方法是从何处判断具体实例化那种客户端类呢?
    ——从conf中的一个参数 fs.defaultFS的配置值判断;

    如果我们的代码中没有指定fs.defaultFS,并且工程classpath下也没有给定相应的配置,conf中的默认值就来自于hadoop的jar包中的core-default.xml,默认值为: file:///,则获取的将不是一个DistributedFileSystem的实例,而是一个本地文件系统的客户端对象

7.3HDFS客户端操作数据代码示例

package com.bigdata.day06_hadoop.hdfs;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
import org.junit.Before;
import org.junit.Test;
import java.net.URI;
import java.util.Iterator;
import java.util.Map.Entry;

/**
 * 客户端去操作hdfs时,是有一个用户身份的
 * 默认情况下,hdfs客户端api会从jvm中获取一个参数来作为自己的用户身份:-DHADOOP_USER_NAME=hadoop
 * 也可以在构造客户端fs对象时,通过参数传递进去
 * @author
 */
public class HdfsClientDemo {
    FileSystem fs = null;
    Configuration conf = null;

    @Before
    public void init() throws Exception{

        conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://hadoop-master:9000");

        //拿到一个文件系统操作的客户端实例对象
        /*fs = FileSystem.get(conf);*/
        //可以直接传入 uri和用户身份
        fs = FileSystem.get(new URI("hdfs://hadoop-master:9000"),conf,"hadoop"); //最后一个参数为用户名
    }

    //上传文件
    @Test
    public void testUpload() throws Exception {
        Thread.sleep(2000);
        fs.copyFromLocalFile(new Path("G:/access.log"), new Path("/access.log.copy"));
        fs.close();
    }


    //下载文件
    @Test
    public void testDownload() throws Exception {
        fs.copyToLocalFile(new Path("/access.log.copy"), new Path("d:/"));
        fs.close();
    }

    //测试配置文件
    @Test
    public void testConf(){
        Iterator<Entry<String, String>> iterator = conf.iterator();
        while (iterator.hasNext()) {
            Entry<String, String> entry = iterator.next();
            System.out.println(entry.getValue() + "--" + entry.getValue());//conf加载的内容
        }
    }

    //创建目录
    @Test
    public void makdirTest() throws Exception {
        boolean mkdirs = fs.mkdirs(new Path("/aaa/bbb"));
        System.out.println(mkdirs);
    }

    //删除
    @Test
    public void deleteTest() throws Exception{
        boolean delete = fs.delete(new Path("/aaa"), true);//true, 递归删除
        System.out.println(delete);
    }

    //递归找到所有的文件
    @Test
    public void listTest() throws Exception{
        FileStatus[] listStatus = fs.listStatus(new Path("/"));
        for (FileStatus fileStatus : listStatus) {
            System.err.println(fileStatus.getPath()+"================="+fileStatus.toString());
        }

        //会递归找到所有的文件
        RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
        while(listFiles.hasNext()){
            LocatedFileStatus next = listFiles.next();
            String name = next.getPath().getName();
            Path path = next.getPath();
            System.out.println(name + "---" + path.toString());
        }
    }

}

8. 案例1:开发shell采集脚本

8.1需求说明

点击流日志每天都10T,在业务应用服务器上,需要准实时上传至数据仓库(Hadoop HDFS)上

8.2需求分析

一般上传文件都是在凌晨24点操作,由于很多种类的业务数据都要在晚上进行传输,为了减轻服务器的压力,避开高峰期。
如果需要伪实时的上传,则采用定时上传的方式

8.3技术分析

 HDFS SHELL:  hadoop fs  –put   xxxx.tar  /data    还可以使用 Java Api
         满足上传一个文件,不能满足定时、周期性传入。
 定时调度器:
    Linux crontab
    crontab -e
*/5 * * * * $home/bin/command.sh   //五分钟执行一次
系统会自动执行脚本,每5分钟一次,执行时判断文件是否符合上传规则,符合则上传

8.4实现流程

8.4.1日志产生程序
日志产生程序将日志生成后,产生一个一个的文件,使用滚动模式创建文件名。

日志生成的逻辑由业务系统决定,比如在log4j配置文件中配置生成规则,如:当xxxx.log 等于10G时,滚动生成新日志
    log4j.logger.msg=info,msg
log4j.appender.msg=cn.maoxiangyi.MyRollingFileAppender
log4j.appender.msg.layout=org.apache.log4j.PatternLayout
log4j.appender.msg.layout.ConversionPattern=%m%n
log4j.appender.msg.datePattern='.'yyyy-MM-dd
log4j.appender.msg.Threshold=info
log4j.appender.msg.append=true
log4j.appender.msg.encoding=UTF-8
log4j.appender.msg.MaxBackupIndex=100
log4j.appender.msg.MaxFileSize=10GB
log4j.appender.msg.File=/home/hadoop/logs/log/access.log

细节:
1、    如果日志文件后缀是1\2\3等数字,该文件满足需求可以上传的话。把该文件移动到准备上传的工作区间。
2、    工作区间有文件之后,可以使用hadoop put命令将文件上传。
阶段问题:
1、    待上传文件的工作区间的文件,在上传完成之后,是否需要删除掉
8.4.2伪代码
    使用ls命令读取指定路径下的所有文件信息,
    ls  | while read  line
     //判断line这个文件名称是否符合规则
if     line=access.log.* (
        将文件移动到待上传的工作区间
    )

//批量上传工作区间的文件
hadoop fs  –put   xxx


脚本写完之后,配置linux定时任务,每5分钟运行一次。

文章作者: 邓滔
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 邓滔 !
评论
  目录