hive学习二


hive 系列教程二

包含如下部分:

一  hive实战

1 Hive 实战案例1——数据ETL

需求:

    • 对web点击流日志基础数据表进行etl(按照仓库模型设计)
    • 按各时间维度统计来源域名top10
已有数据表 “t_orgin_weblog” :
+------------------+------------+----------+--+
|     col_name     | data_type  | comment  |
+------------------+------------+----------+--+
| valid            | string     |          |
| remote_addr      | string     |          |
| remote_user      | string     |          |
| time_local       | string     |          |
| request          | string     |          |
| status           | string     |          |
| body_bytes_sent  | string     |          |
| http_referer     | string     |          |
| http_user_agent  | string     |          |
+------------------+------------+----------+--+

数据示例:

| true|1.162.203.134| - | 18/Sep/2013:13:47:35| /images/my.jpg                        | 200| 19939 | "http://www.angularjs.cn/A0d9"                      | "Mozilla/5.0 (Windows   |

| true|1.202.186.37 | - | 18/Sep/2013:15:39:11| /wp-content/uploads/2013/08/windjs.png| 200| 34613 | "http://cnodejs.org/topic/521a30d4bee8d3cb1272ac0f" | "Mozilla/5.0 (Macintosh;|

实现步骤:

1、对原始数据进行抽取转换
--将来访url分离出host  path  query  query id
drop table if exists t_etl_referurl;
create table t_etl_referurl as
SELECT a.*,b.*
FROM t_orgin_weblog a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id 


2、从前述步骤进一步分离出日期时间形成ETL明细表“t_etl_detail”    day tm   
drop table if exists t_etl_detail;
create table t_etl_detail as 
select b.*,substring(time_local,0,11) as daystr,
substring(time_local,13) as tmstr,
substring(time_local,4,3) as month,
substring(time_local,0,2) as day,
substring(time_local,13,2) as hour
from t_etl_referurl b;



3、对etl数据进行分区(包含所有数据的结构化信息)
drop table t_etl_detail_prt;
create table t_etl_detail_prt(
valid                   string,
remote_addr            string,
remote_user            string,
time_local               string,
request                 string,
status                  string,
body_bytes_sent         string,
http_referer             string,
http_user_agent         string,
host                   string,
path                   string,
query                  string,
query_id               string,
daystr                 string,
tmstr                  string,
month                  string,
day                    string,
hour                   string) 
partitioned by (mm string,dd string);




4.导入数据
insert into table t_etl_detail_prt partition(mm='Sep',dd='18')
select * from t_etl_detail where daystr='18/Sep/2013';

insert into table t_etl_detail_prt partition(mm='Sep',dd='19')
select * from t_etl_detail where daystr='19/Sep/2013';

分个时间维度统计各referer_host的访问次数并排序
create table t_refer_host_visit_top_tmp as
select referer_host,count(*) as counts,mm,dd,hh from t_display_referer_counts group by hh,dd,mm,referer_host order by hh asc,dd asc,mm asc,counts desc;


5、来源访问次数topn各时间维度URL
取各时间维度的referer_host访问次数topn
select * from (select referer_host,counts,concat(hh,dd),row_number() over (partition by concat(hh,dd) order by concat(hh,dd) asc) as od from t_refer_host_visit_top_tmp) t where od<=3;

Hive 实战案例2——访问时长统计

需求:

从web日志中统计每日访客平均停留时间

实现步骤:

    1、 由于要从大量请求中分辨出用户的各次访问,逻辑相对复杂,通过hive直接实现有困难,因此编写一个mr程序来求出访客访问信息(详见代码)
启动mr程序获取结果:
[hadoop@hdp-node-01 ~]$ hadoop jar weblog.jar cn.itcast.bigdata.hive.mr.UserStayTime /weblog/input /weblog/stayout


    2、 将mr的处理结果导入hive表
drop table t_display_access_info_tmp;
create table t_display_access_info_tmp(remote_addr string,firt_req_time string,last_req_time string,stay_long bigint)
row format delimited fields terminated by '\t';

load data inpath '/weblog/stayout4' into table t_display_access_info_tmp;

3、得出访客访问信息表 "t_display_access_info"
由于有一些访问记录是单条记录,mr程序处理处的结果给的时长是0,所以考虑给单次请求的停留时间一个默认市场30秒
drop table t_display_access_info;
create table t_display_access_info as
select remote_addr,firt_req_time,last_req_time,
case stay_long
when 0 then 30000
else stay_long
end as stay_long
from t_display_access_info_tmp;


4、统计所有用户停留时间平均值
select avg(stay_long) from t_display_access_info;

Hive实战案例3——级联求和

需求:

有如下访客访问次数统计表 t_access_times
访客
月份
访问次数
A
2015-01-02
5
A
2015-01-03
15
B
2015-01-01
5
A
2015-01-04
8
B
2015-01-05
25
A
2015-01-06
5
A
2015-02-02
4
A
2015-02-06
6
B
2015-02-06
10
B
2015-02-07
5

需要输出报表:t_access_times_accumulate
访客
月份
月访问总计
累计访问总计
A
2015-01
33
33
A
2015-02
10
43
…….
…….
…….
…….
B
2015-01
30
30
B
2015-02
15
45

实现步骤

可以用一个hql语句即可实现:
select A.username,A.month,max(A.salary) as salary,sum(B.salary) as accumulate
from 
(select username,month,sum(salary) as salary from t_access_times group by username,month) A 
inner join 
(select username,month,sum(salary) as salary from t_access_times group by username,month) B
on
A.username=B.username
where B.month <= A.month
group by A.username,A.month
order by A.username,A.month;

文章作者: 邓滔
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 邓滔 !
评论
  目录